change in sea level across the Pacific Basin during an El Nino shown by altimetry studies indicating a possible shift in the regional gravity field or a tectonic front; and the anomalous temperature increases near the Indonesian upwelling vortex as a well known precursor to El Nino.

GRAVITATIONAL TELE_CONNECTION:
BREATH OF EL NINO

Studies by, Warburton and Goodkind, 1977, at The Univ. of Calif. Dept. of Physics with superconducting absolute gravity meters indicate strong correlations between the gravity residual (what is left after filtering out tidal affects) and barometric pressure changes at frequencies associated with weather patterns. Six microgal changes in the gravitational field are typical with barometric fluctuations in sea level pressure with maximum fluxes of up to 45 microgals. They "measure specifically the influence of barometric pressure on gravity in the frequency range between 0.1 and 10 cycles/day. The power spectrum of the gravimeter and barometric pressure signals measured suggest that the background noise continuum on the gravity signal at all frequencies is produced by pressure fluctuations" (Warburton and Goodkind, 1977).

The Southern Oscillation varies well within the pressure ranges which could cause or, as new tectonic theory would have it, be an effect of a change in the gravitational field between 6-45 microgals. The probability of density oscillations within a tectonic vortex increases when viscosity variations of up to three orders of magnitude are proposed for the lower mantle (Karato, 1981), especially when the vortex structure is the most plausible conduit between mantle-asthenosphere. Sudden phase changes at critical tectonic temperature and pressure between specific mineral suites should be considered as a possible mechanism for these viscosity changes. These density oscillations translate to atmospheric pressure changes near the vortices of the global oscillation system that modulate the global weather patterns through gravitational teleconnection. Generally atmospheric pressure changes are caused by tropospheric convection which is modulated by solar insolation, but within the domain of a tectonic vortex sea level pressure may also be tectonically modulated.

MECHANISM OF VORTEX GRAVITY/DENSITY OSCILLATION

Bruce LEYBOURNE
Naval Oceanographic Office
USNS Sumner, South China Seas
e-mail: smn@salts.icpphil.navy.mil

An analysis of earthquake data for all convergent margins by Smoot in the Sept. (#4), 1997 issue of New Concepts in Global Tectonics hypothesizes the upper mantle composition between the depths of 80-150 km, may be up to 50% eclogite, a metamorphic high-pressure equivalent of basalt which contains pyroxene and garnet (Ehlers and Blatt, 1982). Wysession (1995) layers earthquake regimes at phase change discontinuities at 450 km, where olivine, a major constituent of basalt, changes to spinel a denser phase of olivine, and another at 650 km, where spinel undergoes a phase change. Less than 1% of earthquakes occurring at convergent margins occur along the 450 km boundary and at the 650 km boundary there is less than 2%. The lithosphere is largely uncoupled below 40 km depth within the asthenosphere where the first phase change is from basalt to eclogite (Smoot, 1997).

Convergent margins or trenches form from deep, denser mantle geostreams flowing counter to lighter upper asthenosphere geostreams, much the same way cooler more saline counter currents run beneath the
Kurushio and Gulf Stream in ocean dynamics. Vortices transfer minerals to and from asthenosphere and mantle geostreams by heat and density driven convection and generally occur along areas with large momentum changes such as geostream divergence/convergence zones and island arcs.

Density oscillations of a mineral slurry associated with up to three phase changes of mineral suites within a vortex seem highly probable especially in conjunction with up to three orders of magnitude variation of viscosity of the lower mantle proposed. These phase changes should be excited during tectonic fronts, especially within a vortex. By definition a tectonic vortex is considered a conduit between mantle and asthenosphere. During an increased seismic event associated with El Ninos, magmas within the vortex phase shift as pressure is released by extrusion through the asthenosphere and lithosphere during magma outpourings along the East Pacific Rise. This expansion decreases density as mineral lattice structures shift phase, which reduces the gravitational attraction by microgals within the region of the vortices and geostreams. The slight weakening of the gravity field is translated to the atmosphere as a pressure drop from expansion or decreasing density. Thus it is teleconnected from tectonic vortex not only to the surface, but also through geostreams to other vortices across basin near Indonesia, explaining the mechanism of the Southern Oscillation controlling El Nino.

CONCLUSIONS

This hypothesis also goes a long way in explaining Milankovitch series correlation with climatic shifts. Orbital changes of the earth which shift the distance from the sun are probably not by themselves enough to invoke the observed temperature changes recorded in climate proxies, but changes in G could invoke a weakening or strengthening of gravitational teleconnection between tectonic vortices thus altering weather pattern in unforeseen ways compared to modern day circulation patterns.

Leading researchers on the El Nino phenomena disagree about the causes of global warming. Some argue that man made gases are linked to global warming through the greenhouse effect (which traps solar heat in the troposphere) and the increased frequency of El Ninos (during the past 15 years El Ninos have occurred in the winters of 1982-83, 1986-87, 1991-92, 1994 and 1997). Others argue that the earth may be naturally warming regardless of man made effects, as historical climate records indicate happened periodically in the past. Still others believe, this may be a temporary warming during a longer cooling trend. Although modeling efforts have met with some success in simulating past results using various climate indicators and precursors to El Ninos are fairly well understood, without concrete evidence and sound theory predictions for long range climate change will still be only opinions.

The creation of a global array of absolute gravity stations located within the Global Oscillation System (GOS) would supply researchers with the concrete information needed to ground-truth satellite altimetry data and determine coefficients of surge to be incorporated into earth-ocean-atmosphere coupled models (Leybourne, 1997) and form sound predictions. This information would map geoid undulations and predict their global trends not only for climate modeling, but for earthquake prediction, coupling of the magnetosphere and sunspot activity, and to discern the expansion/contraction phase of the planet (Smirnoff, 1992; Wezel, 1992). Expansion seems the likely culprit of global warming trends as recent planetary alignments which expands orbits and decreases local planetary gravity strength, coincidently coincides with increase frequencies of El Nino and current warming trends. The strength, magnitude and duration of these expansion/contraction phases hold the answers which climate researchers have been recently asking. To know the answers with calculations of real numbers, small scale gravity fluctuations within the GOS must be measured and ground truthed to satellite information, whereby true predictive powers will be realized.

The resolution of the gravity field needed for vortex analysis requires having a field that spans the transition from ocean to continents, thus the requirement that data be obtained using non-altimetric techniques with absolute superconducting gravity meters. The first should go near Darwin, Australia as a pilot study and if results are promising establish stations within Easter Island vortex to develop coefficients for the SOI. Then stations within other vortices of the GOS with the most predictive power such as the NOA between Iceland and the Azores could be established.
COMBINED REFERENCES FOR THE ABOVE TWO LEYBOURNE ARTICLES

Smirnoff, L.S., 1992. The contracting-expanding Earth and the binary system of megacyclicity. In:

Notes: B. A. Leybourne is an employee of the Naval Oceanographic Office. However, this paper was prepared in his personal time. As such, the opinions and assertions contained herein are those of the Author, and are not to be considered as official statements of the US Department of the Navy.

FORCES AND STRESSES ON PLATES

Oakley SHIELDS
6506 Jerseylade Road
Mariposa, California 95338, USA

In plate tectonics, the motion of a rigid plate represents the net effect of all the forces acting on it. These plate driving forces include slab pull, ridge push, trench suction, continental drag, collisional resistance, hotspots, and asthenosphere drag. As a sinking slab would pull the rest of the surface plate with it, slab pull is considered a
tensional force and the dominant force in driving plates toward their trenches. The Pacific, Nazca, Cocos, and Australia-Indian plates are of this type and show the greatest velocities. The slab pull force is a boundary force dependant upon slab length, thickness and subduction angle and encounters an opposing force from the mantle (Wilson, 1993).